
Jourml of Pure and Applied Algebra 32 (1984) 7 l-94 
worth-Holland 

71 

Co~~uuicated by F.W. Lawvere 
Received 5 Jauua~~ 1983 

1. Introductian 

A simple set of axioms for proarrow equipment on a bicategory X was i~~troduced 
in 191. A homomorphism of bi~ategories ( )* : Y -+.A? g~~j~~ 3 ~~~~ ~~u~~~~~~ if 
it is locally fully faithful and for every arrow f in X$ f* has a right adjoint f * in 
A. We may assume that the objects of a,@ are those of .x’ and ( )* is the identity 
on objects. The motivating example is ( )* : CAT-+PROF which associates to a 
functor f: B-*A the profunctor A(-, -f): 

It is clear that there are variants of thi pie to hand1~ .X =cat(S), .2 = 
S-index&-CAT and Z’ = V-CAT for S with finite limits and monoidal K In all three 
cases calculations with proarrows tend to become tedious and an axiomatic 
approach is labour-saving if nothing else, The third example is particularly 
interesting. Generally speaking, emotions do not agree with the e~rresponding 
notions in V-CAT expressed in terms of CATava~ued representability. For exampie, 
to say “f: A+ is V-fully faithful” is usually stronger than to say “ 

A-B 
f 

is an absolute left lifting in V4Zat”s (The latter is equivalent to saying that the 
underlying functor is fully faithful in CAT. See [7] or f9].) However, V-notions ctllz 
be described bi~ategori~a~~y by referring to ( )* : V-CAT+ V-PROF, 

A homomorphism ( )*: ;k’ cOOp+~~tF is obtained when f ++f * is extended to 
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transformations (2-cells) by adjoi~tness. It will often be convenient to regard this 
as ( )* : Y’p --UP. clearly ( )* is essentially recoverable from ( )*$ and ( )* is 
~o~~iy fully f~thfu~ if and unly if ( )* is. For any bi~ategory AS f-t 21 in 4 if and 
only if u-4 f ia AP. Hence: 

e above was given in [9] following a su 
we will mean ‘“forget the direct image”, 

TOP denotes the ~~~~ategury of topoi and geometry m~rphisms and LEX denotes 
the bicar egos of topoi and left exact fun~tors. ~~~~~y this is proarrow equipment. 
( )* : TOP -+LEXCu necessaril becomes, ess~~~~~~~, ~~forget the inverse i 

iation from accepted ter~nolugy. By a 
e mesa a left exalt fu r P;‘-*I!C (between topoi) which has a 

right adjoint* With this convention the forgetful homomorphism TOPGP-%ZAT 
creates the limits in TCW’P which we will require and we do not have to speak of 
bilimits (a.k.a. pseudo~l~mits) as one does with the usual definition. (In spite of this 
conventiun, we accept the doctrine that binotions are the appro for 
~-categories, even when notions are available*) We will write just f ism 
In TOPop that would normally be called f *. A right adjoint of f will be denoted 
by fr. Furthermore, we will denote by $ the unit fur the adjuu~tion f-if*, and f 
will denote the counit. 

a that a left exact functor is a ~progeometri~ murphisms~ has an intuitive 
or a left exact profun~tor with a right adjoint is merely a left exact fu~~tor, 

modulo idempotents splitting in the codomain - a non-condition for a topos. Xt 
turns out, however, that the proarrow equipment ( )* : TQP-+LEXCO enjoys more 
of the properties of ( )* : ~AT~PR~F than does ( )* : TOPoP -+LEX. The reason 
for this will be~~rn~ obvious in ~e~tio~~ 7, 

An ~iornat~~ ( )* : X-, A is not required to arise from universal constructions. 
For reasonable 2’ Street has shown how to ~unstru~t 4 = PR~F(~) using fibratiuns 
in JC The reader. is referred to [6]. Our main result here is that LEX’~(~~ 
equivalent to the category of ~odis~rete TOP cof~brations from B to A 
~EXco(~~ A) 2 P~~~F(TUP~ A) according to Street’s ~o~stu~tion. We arrive at 

s by characterizing arbitrary TOP cufibrations using pertain diagra~~s in LEX? 

y definition, a c P is a fibrati~~ in TOP? 
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and 

in TOPop. 

Proof. It is well known that TOP has finite lax colimits. See, 
[3]. Explicitly, take A/p for YE with the projections for @ 
q/B 2, E/q*. The isomorphism identifies projections.) Cl 

Now, following Street [6], 9 underlies a KZ doctrine and 

for example, 4.25 of 
and u. For SE take 

9 underlies a coKZ 
doctrine on (the bicategory) (SPN TOPoP)@, A). Briefly, Y is a monad for which 
any algebra ((p, E, q), @ : YE +E) enjoys IE --I @ in (SPN TOPoP)@, A), where I is 
the unit for 9. Similarly, for any structure @ : 2E +E, @ -i rE, where r is the 
unit for 2. So carrying an Y- or g-algebra ‘structure’ is a property of a span. In 
Street’s terminology: A span p : A+E +B : q is a TOPoP left (respectively right) 
fibration from B to A if and only if it is an Y- (respectively a-) algebra. 

It is crucial to observe the bicategories iln which the above adjunctions take place. 
1E is defined by 

(e +, (ep+ep, e)). Lemma 2 and this definition ensure that 1E is an arrow of TOPoP 
and moreover that it is an arrow of spans. So 1E has a CAT right adjoint, (lE)*, 
and for future convenience we note that it is given by 



(a : a-+ep, e) - (a, e)(~E)~ - e 

where the square is a pullback and pI denotes the unit for the CAT adjunction 
p--i JI*, (~E)~ is not necess~i~y an arrow between the underlying CAT spans. This 
would require precisely that (a, ~)(~E)*~ = 4 and (tr, e)(~~)*~ = eq, which would 
mean precisely that the underlying CAT span of (p, E,@ is a CAT left fibration 
fram B to ~4. In such E situation we write CY~-V for (~,~)(~E)~4e and use a sug- 
gestive notation that seems to be due to Benabou: 

We also, in this situations refer to (ME)* as a left action and say that cye++e is cctr- 
~es~~~ ever a. It is easily seen that fig in TC?P*p means that ff=g, So to say that 
IE -I @ in (SPN TOPup)(B, A) is to say that (IE)*= @ is as above and has a CAT 
right adjuint, @+ (which is not necessarily an arrow of spans). summarizing: 

3. A span p : A +-E -+I3 : q ira TOPop is a TOPOP Iefl f~~rati~~ fFu~ B 
to A if and only if it is a CAT left fibration from B to A and the left action has 
a CAT right adjoint. Cl 

We will interpret such @+ later. Note that we always have a T~P’P adjunction 
U-I IE and a CAT adjunction U! --I M, eu! = (! : O-wp, e); so u! does not preserve f 

and is thus not an arrow in TOP (It clearly does preserve pulibacks.) 
~utatis mutandis we have: 

to A if and only if it is a 
left exact. c3 

The term ‘right action’ and our notation is best summed up by: 

*-• 
l *T 

** I 

CAT right fi~~ati~~ from B to A add the right actiu~ is 
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The reader is assumed to be familiar with the universal property that a 
(SPN CAT)(B, A) adjunction, @ -I &gives to e/? : = (e, /?)a. A standard reference 
is [2]. Since the actions are necessarily unitary, left exactness of @ just means that 
it preserves pullbacks. 

As they must, 9Y= H?, and we write Y for the doctrine built from this distri- 
butive law. One might note in passing that 

is a pullback in TOPoP created by TOP OP+CAT, a pushout of inclusions in TOP. 
Objects of FE are just triples ((x : a+ep, e, p : eq-+b) where ar, /3 are morphisms in 
A, B and e is in E. Given p : A tE -+B : q in TOPOP, 

where Tp, w and Fq denote projections; is a universal such diagram in TOPoP. A 

TOPOP fibration from B to A is a salgebra, that is, a span which is simultaneously 
a left fibration and a right fibration such that the actions associate [d]. The latter 
means that (ae)/?%(e& generically, and we will see later that associativity follows 
from the other data in the TOPoP case. 

Corollary 5. A span p : A +E + B : q is a TOPoP fibration from B to A if and only 
if it is a CAT fibration from B to A and the left action has a CAT right adjuint 
and the right action is left exact. 0 

Discreteness in a bicategory can be defined in terms of ( )2, when such limits 
exist. The forgetful homomorphism TOP OP+CAT creates ( )’ from which it 

follows that (SPN TOPOP)(B, A)+(SPN CAT)(B, A) does too. Whence: 

Corollary 5 remains valid when ‘fibration’ is replaced by ‘discrete 
fibration ‘. 0 



So, far topoi A and B, among all fnnct~rs A’* x B *SET are those for which the 
corresponding discrete f~~ration has a two~s~ded action which is left exact with a 
right adj~int. It is natnra~ ta conjecture that these give rise to pr~funeturs 3-M 
waist are left exact and have right adj~ints. Wits obvious notation: 

Proof, We prefer to prove this as a cozgliary of our characterization of not- 

In 161, Street intr~d~ed ~~g~~~~~ in his ~h~acterization of ~~fi~rati~ns in V- 
CAT. gamuts and related notions can be defined in the contest of any pr~arr~w 
equipment ( )* : T--J, A. We limit ourselves to ( )* : TOP+LEXcu here. For top& 
A and u8 (or simply act) fade 

. h 
A-3 

x 

in LEX. An arrow from t/z, X,f, g, o) to (h’, X~~~,g~~ (t’) consists of a transformation 
r: h”-+h (in LEX), a TOP arrow k,: X-+X’ and transformations y : k*g’-*g and 
S : f” -+ fk* such that 

A transformation from (+, k*, y, 8) ta (z’, A$, r’, 8) is a transformation Icrir : ki -+k* 

satisf~n~ K*g’* y = y’ and S’+ fncs = 4% e write *~~~~, A) for the res~Itin 
~i~ate~~ry. 

Xt is easy to see that if X is t the zero object of LEXco, tfren (h, I,!, !, !) is 

cu~~~c~~~~ in that an object C of a ~icate~~ry is c~discrete if 
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is ~~c~ssar~~y an identity transfer 
we cloud the distiucti~n between 
acre ~pprupriate 

e can establish the c~~~verse. As 
, in this case c~d~scret~~ess~ an 

Let I%* :ki ‘k*; k;, k* : x 
C~us~der the ~amut~ 

X 

P transf~rmati~u~ 

is a pullback in LEX(& A), & being the counit for the CAT adjunction, k--r krtc. It 
is ncrw easy to verify that (r, k*, &g9 fx*) and (T, k& auks. kg8 fk~~ are arrows from 

is a transformative between them in 
A), cluck, rc* is an identity~ 

Since TOPQP -+CAT creates ( )$ 1 is essentially the only c~discrete in TO 
A) for the biful~ su~bicate~~ry of (* A) deter- 

miu~d by the c~discretes we have: 

~,~), is a unitary morphism of ~icate 
cueing c~nstructi~u’ [IO] to a debut 

q and t are in ‘I i)P’P: 



4 



13 to A. The right action is teft exact since k, f and g are. The left action has a right 
adjoint which sends our generic object of E to 

where the square is now a pu~~ba~~ (in A) and a-+6 is the fitl-in determined by the 
original square. We omit the rather tedious verification of this, El 

11% As usual: an arrow between fibrations is a Talgebra homomorphism. 
The apparently bizarre definition of arrows between gamuts is precisely what is 
needed to establish Proposition 11. We note, however, that there are independent 
considerations that lead one to such a definitic n (cf. Thi~baud [g]). fzI 

We wiXI show in the next section that al TOPup fibrations from B to Al essentially 
arise from the gIuei 

Given a TOPap fi 43 : q we define 5 : E+E by et = ~~!~~ +. By 
e! we mean as above where p= ! : eq--s I in B, Consider 

e -+ Ce!)@*u 

eu! --+ e! 

!e-+e! 

EIere !e is ae, where a = ! : O-+ep* Note that we are using eu! = !e, which fo~~o~~s 
immediately from the description of u! given earlier We define ei: e-+er to be the 
transpose of !e-+e--+e!. Our immediate goal is to show that t together with ik an 
idempotent left exact triple on E’. 

Lemma 13. q has a fully faithful CAT left adjoini, q! , and q! p = 0. 

Pr~~~* mince Q : .E -+B is a CAT right fibr ion ~from 13 to I), e~~~~~~~ has a fully 
faithful left adjoint~ for all e in E. In particular q : E =0/E -4 =B has a Left ad- 
joint, q, Since p : A +--1E+B : q is a CAT fibration from .B to A, (~!p = 0 follows 
from: 



_ - 
0 o-b rl 

Corollary 14. !(bq!) = bq! , for aN b in I?. q 

Lemma 15. &uq=q. 

Proof. 
b--W&w 

(bq!h@ -+ e 

!(bq!)*e 

bqr -+e . 

b-,eq cl 

Proposition 16. t together 

Proof. ? is left exact since 

d+ett 

with t is an idernpotent left exact triple on E. 

the right action is. 

d-+ (WMWV)@*u 

!d + ((e!)@ *u)! 
t 

!d -+ (e!)@ +u 

!!d+e! 

!d+e! 

d+et 

For t above we note that 

since 
((e!)@ dO! = (e!k@ +u, 

(e!)@*uq=(e!)q= 1. Cl 
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Let X denote the subtopos of E corresponding to t. We abuse notation and write 
t l E-+X in a TOP*P l Now 

Q*P 
A-B 

defines a gamut from B to A. 

4. The main rt?sult 

We will show that 2’ and A introduced, in Section 3 constitute a biequivalence, 
*GAM(B, A) - (COFIB TOP)(& A). 

Proof. If 

/ 

P j r/ 
A 1 

r’ 

\\ 

\ 

\ q 
\ 
\ 

i 
B 
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then: 
(i) We may take 

Hence q*p = h and q*t =J 
(ii) We may take 

xt*= 

Hence t+p = g. 
(iii) From (ii) we see that 

d= 1 
bh 

/ 

0 

a 

\ 
@ 

\ 

ba !/lh\ 10 

If9 

“\ / = ! 

_ xg 
c1 which together with the diagram in (i) yields q*ip=a. LJ 

= dtt* 

To establish that (COFIB TOP)@, A)-+*GAM(B, A)-+(COFIB TOP)@, A) is 
equivalent to the identity we find it convenient to introduce some more notation. 
We write (p, 8,q) for C(d(p, E, q)) and k : E -+E for the functor defined by 

e-ep eqqJt,p 
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(As before we are writing 

83 

x 

for d(p, E, q).) k is clearly an arrow of spans. It is also an arrow over X, if we write 
f: E-+X for the ather projection. 

Now, it is well known from Wraith’s glueing cunstructiun that E is isomorphic 
to the category of c~algebras for a left exact c~triple on A XX x l3, by an isomer- 
phism that identifies (p, c @ with the forgetful functor. Our present task amounts 
to showing that if (pt E, q) is a TOPOP fibrati~n, then (pt t, q) : E-4 XX x B is 
cotripleable, k : -+A!? is the usual comparison functor. The next Iehmma will allow 
us to simplify notation somewhat. 

Lemma 19. If (p, E, q) is a TOPOP fibrution, then pS, t* and q* are inclusions in 
TOP. 

Proof. tJI is so by construction. From lemma 13 we have q! fully faithful and since 
q! -t q--i qs in CAT we have q* fully faithful also. Since p : E -+A is a CAT left 
fibration (from 1 to A), E/e-+A/ep has a fully faithful right adjoint, far all e in 
E’. By taking e= 1 we see that p* is fully faithful. cf 

This allows us to supp~~~ss ps and write jr: E+p fur I?_: E-+~tt*, when con- 
venient. We do similarly for t* and qs. 

Lemma 20, k: E--d? has a right ad~o~nt, k*. 

Prwf, Actually, this together with left exactness of k follows because our c~nstruc- 
tions ensure that k is a TOPOP arrow. For 

d= 

in E, in which q* and t+ are suppressed, dam is given by the following inverse limit 
diagram in E 
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Verification of this is straightforward. Cl 

Lemma 21. For (p, E, 4) Q TOPoP jibration, p+q= 1, pd= 1 and t&F 1. 

Proof. (i) p+q = 1 follows from 

: 
: 

a 

1 
:\ 
: \ 

after the proof of Lemma 19. 
(ii) For pet= 1 observe that in E 

where t follows from (i). Since 

and the front square is Cartesian there is exactly one such morphism in E. 
(iii) For t*q= 1 it suffices to show (e!)&uq = 1, for all e in E. This follows 

immediately from Lemma 15. 0 

a 22. ka is fully faithful. 
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for all d, as above, in E. Such is~m~rphisms are found when p, t and q are applied 
to the finite limit dia~r~ which defines k* and the results of Lemma 21 are taken 
into ac~~~nt* Cl 

is a pu~I~ack in E and 

is a pullback in B2 and the right action is left exact, 



is a pullback: in E. A~pl~~g etd and noting the d~f~njt~on of t we have a pullback, 

*t23 q as the following c elation shows: 

!J-+eq in E 

d-vq inE Cl 

of, After proposition 18 and Lemma 22, it only remains to show J& 
i.e, the diagram 

is a limit diagram in E, for all e in &Z 
/E is fully faithful and /E rlrr @* is fully faithful. From this we see 
$ is of the form (erc : ep-+e *ta) and that e=(e~)e +q for afl e in 

E. In our simplified notation the last isomorphism can be expressed by the following 
pullback diagram in E: 
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This pullback together with that of Lemma 23 enable one to show that e is the re- 
quired limit. Cl 

Corollary 25 (Theorem 7). (CODCOFIB TOP)@, A) - LEX’*f& A). 

Prortf, Proposition 9. (Note that (COFIB Y)(B, A) = (FIB Y”P)(B, A)“P and 
.wCO(B, A) = *Y(B, A)?) cl 

5. Further aspects of TOP cofibrations 

Theorem 24 enables one to quickly discover many properties of TOPop fibra- 
tions, Since all essentially arise from gamuts, ‘diagram lemmas’ are particularly easy 
to check. A single example (cf. 1 f +.zlma 23) should iIIustrate the point. 

e! ------+ et 

I I et@ 

Proof. Let 
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A TOPoP fibration, (p, E, q), gives rise to two more (CAT) actions on E. 

Lemma 27. For any s : E -+ T in CAT; if s i sic with ss fully faithful and if E has 
and s preserves pullbacks, then s is a CAT left fibration (Jrom 1 to T). 0 

So, for ELI: E’$ q) % TOPoP fibration, t : E-+X and q : E -+B are also CAT left 
fibrations. we can say somewhat more. 

Proposition 28. t : XtE-4 : q is a LEX fibration from B to X. 

Proof. LEX*CAT creates the limits needed to define 9, 5;p and .?- as before. If 
(p, E, q) arises from the gamut (h, X, f, g, a), it is easily verified that 

bh bh 

describes the left X action. Clearly this is compatible with the original right B action 
and the two associate. Cl 

For e in E and #3: b*eq in B, we write j3 oe for the left action of B on E. 

Proposition 29. q : E +B satisfies the Beck-ChevaVey condition. That is, if 

/ 

eq 
n 

b0 

\ 
e 

b 

is a pullback in B, then (710 e)@j3 0 (ey). 

roof, - 0 - can be calculated using pullbacks in E. We 
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is a pullback in E and 

de§cri~ed by 
arises front a gamut, (k, X,X g, CI), it is easy to see that q! can be 
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Corollary 31. q : E -+B is a fogicul morphism. 

Proof. See Theorem E of [l]. fl 

Corollary 32. q* : B-+E is an open inclusion in TOP if cm$ o&y if it is u TOP right 
cocfibration (from B to 1). 

Proof. ‘If’ follows from Corollary 31 and Lemma 1.4 of [4]. Conversely, if q+ is 
an open inclusion, we may take p* : A -+E to be the complementary closed inclusion 
and the glueing construction for a left exact ftinctor tells us that (p*, E, q*) is a 
TOP codiscrete cofibration from B to A. In particular q* is a TOP right 
cofibration. 

Of course 
q*: B-+E is 
has 

cl 

the ‘if’ part above also follows immediately from the observation that 
equivalent to E/o -+ E, where u)-, 1 in E (for E arising from a gamut) 

v = 0 

Similarly, for p* : A +E arising from a gamut, we see that plc is the closed inclusion 
corresponding to u- 1 in E, where 

Proposition 33. pI : A-E is a closed inclusion in TOP if and only if it is a TOP 
left cofibration (from 1 to A). Cl 

For a TOP cofibration (p*, E, q*), with u and u as above, we see that W-W. This 
expresses the fact that p+ and q* are ‘disjoint’. Cofibrations can be constructed 
from such data: 

roposition 34. If 1 ~uc-(v in a topos E and p* : A +E is the closed inclusion cor- 
responding to u and q * : B -+E is the open inclusion corresponding to v, then 
(p*, E,q,) is a TOP cofibration from B to A. 
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Proaf, After corollary 32 and Proposition 33 we have only to check the com- 
pati~ility of the actress and their associations. We have A e~ui~~a~ent to the full sub- 
category of E determined by those e for which e x u-3&, B(-E/o) equivalent to the 
full subcategory of E determined by those e for which e%?+ 

is a ~~s~~~t and e@ : e-+eq is the d~a~~~al~ e--+& Now pq is 1, si ce u is initial in 
A and I~+T-I. For e in E and a : a-+ep in A,ae is given by the following pullback 
in E 

ae- e 

I I X efs 

After a~~~yi~~ q = ( )” to this we still have a pullback, but with pattern row I--* l* 
Hence (cre)q== eq and (p*, E, q*) is a left c~fi~rati~~ from B to A. 

For /3 : eq-+b in B, let B : e-b denote its transpose in E. Since q has a left ~dj~i~t~ 
viz. - x U, and e” x use x u, we can capsulate e/3 as the fo~l~~in~ pus~~ut in E 

exu Bxo 
+bXU 

Since p preserves pus~~uts~ e~~(e~)~ if p inverts the top row. But for any e we 
have (e x u)p=iu, since uz-+u implies u x O%I. Hence (p** E, q*) is a right cofibra- 
tion from B to A. 

Final~y~ to see that ), observe that 

eq 

I 



R. Rosebrugh, R.J. Wood 

is a pullback in B2; conclude that 

a -ep 
a 

is a pullback in E and note that this pullback defines cr(e@). 0 

Remark 35. The proof of Proposition 34 also sliows that in TOPoP assoriativity 
follows from the other requirements for a fibration. That is: ( plc, E, q*) is II TOP 
cofibration from B to A if and only if it is both -1 TOP left cofibration from B to 
A and a TOP right cofibration from B to A. II 

In view of Proposition 29 for our generic Q : .kd F-B, we might consider the left 
action of B on E to be the leading aspect and fcllowing Pare and Schumacher [5] 
write b*(e) for #? 0 e and Z“(e) for ep. Then the &indexed category corresponding 
to 4 has particularly well-behaved B-indexed suns. (There is some justification for 
this since cod : B 2 -+B provides the paradigmatic example of q and gives rise to the 
usual indexing of a base category B. We baster to add, however, that geometric 
morphisms are usually taken to define quite a different indexing.) From this point 
of view it is natural to enquire whether the @+ en.joyed by p : E +A endows the cor- 
responding A-indexed category with any A-inde:;red products. In a meagre way the 
answer is yes. 

To understand @* this way it suffices to understand @+u. For e in E, write e for 
e@ +u. Then ( -) : E +E is right adjoint to !( ) : E +E and it is easy to verify that 
e=!e (and !e= !e). So it suffices to study e for e such that ep =O. In this case 
e-n(e), where ! is O-+ep, follows immediatel;rr from the adjunction. 

6. Examples 

In principle, Theorem 24 and Proposition 34 make the construction of TOP 
cofibrations a simple matter but we wish to emphasize two naturally occurring 
classes of examples. 

The homomorphism (^) : CATCooP-CAT, defined by g= setEoP, has a left ad- 
joint (viz. (“) where p= (setF)OP). Its restriction to catcoop, where cat = cat(set), 
factors through TOPOP-,CAT so cat” -+TOF” preserves the colimits needed to 
define cofibrations. CAT cofibrations were c:iraracterized by Street in terms of 
gamuts relative to CAT-,PROF. The reader ir. referred to [6]. 

osition 36. If p : A +E a+- : q is a cat cofibration from A to B, then 
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p+: &I?+& q* is a TOP cofibration from B to A. (Here P--I pW and 

Q-rq**) tl 

After Proposition 32, 33 and 34 the following topological result is immediate. 

Proposition 37. If F>-, X H U in top, the category of small topological spaces, with 
F closed, U open and F n U = 0; then ~~~~ 0 is a TOP cofibration from 0 to 
F. q 

7. Prononsense 

If @ : B-+A is a profunctor between categories, it is well known that the 
associated codiscrete cofibration is A --) p+ B, where 19 I= 1 A I+ 123 I, F(a’, a) == 
A(a’, a), p(b’, b) = B(b’, b), p(a, b) = @(a, b), p(b, a) = 0. This construction has a 
universal property relative to CAT+PROF. Indeed, arrows of CAT cospans, 

(A-,Qi+B)*(f: A-+M*B:g), 

are in bijective correspondence with transformations, Q, -+g& f *, in PROF. After 
Corollary 25 it should be clear that the glueing construction applied to a single left 
exact functor enjoys the same universal property relative to TOP-+LEXCo. 

Similar to the above construction for profunctors is that which associates to a 
protriple, @: A*A, a functor, A-A,. Here (A#I=IAI, A+(a’,a)=@(a’,a), COIII- 
position is accomplished via @@@ -+Q), and .4 --+@ is used to define A-+A@. This 
construction too has an obvious universal property and it makes sense to enquire 
after it for any proarrow equipment, ( )*. Following the situation in CAT, it is 
reasonable to say that f: A-+B in J’ is bijective on object: relative to ( )* if B is 
equivalent to A@ for some triple @ in A. Necessarily @ can be taken to be f*@ f *. 
Since a triple in LEXCo is a left exact cotriple, it is easy to see that the ‘glueing’ con- 
struction, which associates to a left exact cotriple the geometric morphism oeter- 
mined by the cofree functor, realizes the above universal property relative Ito 

TOP+LEXCo. In [9], f : A +B in J’ is defined to be fully faithful relati :e to 
( ),,, : S+U? if $: Ajf,@ f * is an isomorphism. 

Theorem 38. The image factorization system of TOP is the bijective on objects - 
fuh’y faithful factorization system rela,!ive to TOP-+ LEX’O. il 
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