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1. Introduction

A simple set of axioms for proarrow equipment nn a bicategory ¥ was introduced
in [9]. A homomorphism of bicategories ( )«: X — .4 equips X with proarrows if
it is locally fully faithful and for every arrow f in ., f, has a right adjoint f* in
. We may assume that the objects of .# are those of # and { )4 is the identity
on objects. The motivating example is ( )«: CAT—PROF which associates to a
functor f:B— A the profunctor A(—, —f):B—A.

It is clear that there are variants of this example to handle ¥ =cat(S).
S-indexed-CAT and ¥ = V-CAT for S with finite limits and monoidal V. In all three
cases calculations with proarrows tend to become tedious and an axiomatic
approach is labour-saving if nothing else. The third example is particularly
interesting. Generally speaking, V-notions do not agree with the corresponding
notions in V-CAT expressed in terms of CAT-valued representability. For example,
to say ‘‘f: A—B is V-fully faithful’’ is usually stronger than to say ‘¢

/N

Am—*B

is an absolute left lifting in V-Cat”’. (The latter is equivalent to saying that the
underlying functor is fully faithful in CAT. See [7] or [9].) However, ¥-notions can
be described bicategorically by referring to ( )«: V-CAT—V-PROF.

A homomorphism ( )*: #*°P— 4 is obtained when f~ f* is extended to
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transformations (2-cells) by adjointness. It will often be convenient to regard this
as ()*: #°P— .4, Clearly ( )4 is essentially recoverable from ( )* and ( )* is
locally fully faithful if and only if ( )« is. For any bicategory .#, f - u in .« if and
only if u - fin 4. Hence:

Proposition 1. ( )« : ¥ — .4 equips X with proarrows if and only if ( )*: X —.4*°
equips ¥°° with proarrows. [

A less dry example than those above was given in [9] following a suggestion of
R. Paré. By ( )*: TOP? ->LEX we will mean ‘‘forget the direct image’’. Here
TOP denotes the bicategory of topoi and geometric morphisms and LEX denotes
the bica:egory of topoi and left exact functors. Clearly this is proarrow equipment.
( )x: TOP = LEX® necessarily becomes, essentially, ‘‘forget the inverse image”’,
which brings us to a slight deviation from accepted terminology. By a geometric
morphism E—F we mean a left exact functor F—E (between topoi) which Aas a
right adjoint. With this convention the forgetful homomorphism TOP? —+CAT
creates the limits in TOP°P which we will require and we do not have to speak of
bilimits (a.k.a. pseudo-limits) as one does with the usual definition. (In spite of this
convention, we accept the doctrine that binotions are the appropriate ones for
2-categories, even when notions are available.) We will write just f for a morphism
in TOP® that would normally be called f*. A right adjoint of f will be denoted
by f«. Furthermore, we will denote by f the unit for the adjunction f — fu, and f
will denote the counit. N

The idea that a left exact functor is a ‘progeometric morphisms’ has an intuitive
appeal. For a left exact profunctor with a right adjoint is merely a left exact functor,
modulo idempotents splitting in the codomain - a non-condition for a topos. It
turns out, however, that the proarrow equipment ( ) : TOP—LEX® enjoys more
of the properties of ( )4 : CAT—PROF than does ( )*: TOP°® - LEX. The reason
for this will become obvious in Section 7.

An axiomatic ( )« :.¥ —.«# is not required to arise from universal constructions.
For reasonable ¢ Street has shown how to construct .# = PROF(.¥) using fibrations
in . The reade: is referred to [6]. Our main result here is that LEX®°(B, A4) is
equivalent to the category of codiscrete TOP cofibrations from B to A, i.e.
LEX®(B, A)=PROF(TOP)(B, A) according to Street’s constuction. We arrive at
this by characterizing arbitrary TOP cofibrations using certain diagrams in LEX®°,

2. Cofibrations in TOP
By definition, a cofibration in TOP is a fibration in TOP®P.

Lemma 2. For a span p: A< E—B:q in TOP®P there exist universai diagrams
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in TOP°P,

Proof. It is well known that TOP has finite lax colimits. See, for example, 4.25 of
[3]. Explicitly, take A/p for ¥E with the projections for #p and u. For ZFE take
q/B> E/q.. The isomorphism identifies projections.) [l

Now, following Street [6], # underlies a KZ doctrine and ¥ underlies a coKZ
doctrine on (the bicategory) (SPN TOPP)(B, A). Briefly, % is a monad for which
any algebra ((p, E, q), @ : ¥E —E) enjoys [E 4 @ in (SPN TOP°?)(B, A), where [ is
the unit for #. Similarly, for any structure @ : #E —~FE, @ —rE, where r is the
urnit for #. So carrying an %- or #-algebra ‘structure’ is a property of a span. In
Street’s terminology: A span p: A<E—B:q is a TOP left (respectively right)
fibration from B to A if and only if it is an #- (respectively #-) algebra.

It is crucial to observe the bicategories i.1 which the above adjunctions take place.
IE is defined by

E
HE
i
v
YE
p
u
AL
/
A

(e (ep—ep,e)). Lemma 2 and this definition ensure that /E is an arrow of TOP®P
and moreover that it is an arrow of spans. So /E has a CAT right adjoint, (/E)s,
and for future convenience we note that it is given by
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(a:a—ep,e)~(a,e)((E)y— ¢

X ep

ap« ""’;IE““"’GPP:
where the square is a pullback and 7 denotes the unit for the CAT adjunction
P ps. (IE)« is not necessarily an arrow between the underlying CAT spans. This
would require precisely that (a,e)(lE)«p=a and (@,e)(/E)+q=eq, which would
mean precisely that the underlying CAT span of (p, E, q) is a CAT left fibration
from B to A. In such & situation we write ae—e for (a, e)(/E).—*e and use a sug-
gestive notation that seems to be due to Benabou:

aqe——> ¢
TN N

a ——ep eq

We also, in this situation, refer to (/E)4 as a left action and say that ae—e is car-
tesian over a. It is easily seen that f— g in TOP°P means that f,=g. So to say that
[E -4 @ in (SPN TOP°P)(B, A) is to say that {({E)«= @ is as above and has a CAT
right adjoint, @« (Which is not necessarily an arrow of spans). Summarizing:

Proposition 3. A span p: A<—E—B:q in TOP® is a TOP® left fibration from B
to A if and only if it is a CAT left fibration from B to A and the left action has
a CAT right adjoint. [

We will interpret such @« later. Note that we always have a TOP adjunction
u—IE and a CAT adjunction u,—u. eu,=(!:0—ep,e); so u, does not preserve 1
and is thus not an arrow in TOPP. (It clearly does preserve pullbacks.)

Mutatis mutandis we have:

Proposition 4. A span p: A—~E+«B:q in TOP® is a TOP®P right fibration from B
to A if and only if it is a CAT right fibration from B to A and the right action is
left exact. [

The term ‘right action’ and our notation is best summed up by:

Q- -~
S — —

ep’

™=
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The reader is assumed to be familiar with the universal property that a
(SPN CAT)(B, A) adjunction, @ - rE,gives to ef:=(e, f)@. A standard reference
is [2]. Since the actions are necessarily unitary, left exactness of @ just means that
it preserves pullbacks.

As they must, #¥ = ¥#, and we write .7 for the doctrine built from this distri-
butive law. One might note in passing that

is a pullback in TOP®? created by TOP°? = CAT, a pushout of inclusions in TOP.
Objects of JE are just triples (a:a—ep,e, f:eq—b) where o, f are morphisms in
A,B and e is in E. Given p: A«E—B:q in TOP,

where 7p, w and Jq denote projections; is a universal such diagram in TOP®?. A
TOP®® fibration from B to A is a J-algebra, that is, a span which is simultaneously
a left fibration and a right fibration such that the actions associate [6]. The latter
means that (ae)8 = a(ef) generically, and we will see later that associativity follows
from the other data in the TOPP case.

Corollary 5. A span p: A—E—B:q is a TOP fibration from B to A if and only
if it is a CAT fibration from B to A and the left action has a CAT right adjoint
and the right action is left exact. U

Discreteness in a bicategory can be defined in terms of ( ), when such limits
exist. The forgetful homomorphism TOP°—CAT creates ( )* from which it
follows that (SPN TOP°P)(B, A)—(SEN CAT)(B, A) does too. Whence:

Corollary 6. Corollary 5 remains valid when ‘fibration’ is replaced by ‘discrete
fibration’. [J
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So, for topoi A and B, among all functors A°’ x B—SET are those for which the
corresponding discrete fibration has a two-sided action which is left exact with a
right adjoint. It is natural to conjecture that these give rise to profunctors B—+A4
which are left exact and have right adjoints. With obvious notation:

Theorem 7. (DFIB TOP°P)(B, A) ~LEX(B, A).

Proof. We prefer to prove this as a ccrollary of our characterization of not-
necessarily-discrete fibrations (Theorem 24). [

3. Gamuts relative to ( ), : TOP—LEX*®

In [6], Street introdued V-gamuts in his characterization of cofibrations in V-
CAT. Gamuts and related notions can be defined in the context of any proarrow
equipment ( )y : ¥ —.4. We limit ourselves to ( )4 : TOP—LEX® here. For topoi
A and B, a ( ).-gamut (or simply gamut) from B to A is a diagram:

A+—B
g\ © f

X

in LEX. An arrow from (4, X, f, g, 6) to (h', X’, f’, g, ¢') consists of a transformation
7:h’—h (in LEX), a TOP arrow k,: X— X' and transformations y: k.g'—g and
d: f'— fk« such that

. o B=Ac«
a
s i g + f
X X

A transformation from (z, k4, ¥, 0) to (', k4, ¥',8’) is a transformation Ke ku—ky
satisfying k«g'-y=y’ and &’- fkx=4J. We write *GAM(B, A) for the resulting
bicategory.

It is easy to see that if X is 1, the zero object of LEX®°, then (A, 1,1,1,!) is

9 €3 *y

codiscrete in *GAM(B, A). {Recall that an object C of a bicategory is codiscrete if
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any transformation

L 3

c | T

is necessarily an identity transformation.) We can establish the converse. As usual
we cloud the distinction between the notion, in this case codiscreteness, and the
more appropriate binotion.

Lemma 8. If (h, X, £, g, 0) is codiscrete in x\GAM(B, A), then X is codiscrete in TOP.

Proof. Let Ky :kx—ks, ki, ke: X=E be determiued by a TOP transformation.
Consider the gamut,

A B
kg\u| [fke
E
where
m d h
u X o

Jkxkg Wfk*kg ““z,;;“’fg

is a pullback in LEX(B, A), k being the counit for the CAT adjunction, k — k. It
is now easy to verify that (z, k+, kg, fik«) and (7, ks, k+kg - kg, fk+) are arrows from
(h, X, 1,8, 0) to (m,E, fki, kg, n) and that x4 is a transformation between them in
sGAM(B, A). Hence, k, is an identity. [J

Since TOP® —CAT creates ( )% 1 is essentially the only codiscrete in TOP.
Writing (COD*GAM)(B, A) for the bifull subbicategory of (+GAM)(B, A) deter-
mined by the codiscretes we have:

Proposition 9. (COD*GAM)(B, A)~LEX®(B, 4). U
A gamut from B to A, (h X, f,8 0), is a unitary morphism of bicategories,

3—LEX. We can apply Wraith’s ‘glueing construction’ [10] to a gomut and get a
universal diagram, where the constructed arrows p,q and ¢ are in 1OP:
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The objects of E are 6-tuples (a, x, b, 6, ¢, ), whereae A, xe X, be Band 0, ¢, and
w are morphisms in A satisfying

bh
PN
a I bfe
\‘ ve
xg

The morphisms of E are as expected.

Proposition 10. The TOP span p: A« E—B:q constructed above is a TOP®?
fibration from B to A.

Proof. The action .7E —E is best described symbolically by

~ bh ~
a——aa bfg, b___._‘.e...», b’
N A
" x‘f J
b'h
afl(fh) b'a
a’ b'fg
N Ajgf Ng
Xg

It is entirely straightforward to show that this makes (p, E, g) a CAT fibration from



Cofibrations in the bicategory of topoi 79

Bto A. The right action is left exact since A, f and g are. The left action has a right
adjoint which sends our generic object of E to

a—a,a \ /
where the square is now a pullback (in A) and a—a is the fill-in determined by the
original square. We omit the rather tedious verification of this. [J

Proposition 11. The glueing construction extends to a homomorphism of bi-
categories X : *GAM(B, A)—(FIB TOP?)(B, A)°°=(COFIB TOP)(B, A). [

Remark 12. As usual, an arrow between fibrations is a J-algebra homomorphism.
The apparently bizarre definition of arrows between gamuts is precisely what is
needed to establish Proposition 11. We note, however, that there are independent
considerations that lead one to such a definiticn (cf. Thiébaud [8]). [

We will show in the next section that all TOPP fibrations from B to A essentially
arise from the glueing construction.

Given a TOP®P fibration p: A«—E—B:q we define t: E—~FE by et =(eD@ 1. By
e! we mean ef as above where f="!:eq--1 in B. Consider

e—ret

e (e)@u

eu,@ — e!

le—e!

Here le is ae, where ¢ =!:0—¢p. Note that we are using e, @ =!e, which follows
immediately from the description of u, given earlier. We define ef: e—et to be the
transpose of !le—e—e!. Our immediate goal is to show that ¢ together with ¢ is an
idempotent left exact triple on E.

Lemma 13. g has a fully faithful CAT left adjoint, q,, and q,p=0.

Proof. Since ¢ : E—Bis a CAT right fibration (from B to 1), e/E —eq/B has a fully
faithful left adjoint, for all e in E. In particular ¢ ;: E =0/E »0g/B =B has a left ad-
joint, qy. Since p: A~E—B:q is a CAT fibration from B to 4, ¢;p=0 follows
from:
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.
.
. o®

Corollary 14. !(bg\)=bq,, for all b in B. U
Lemma 15. @sg=q.

Proof.
b—e@uuq
bg)u@—e
(bg)) e

bg,—e

b—eq O
Proposition 16. ¢ together with [ is an idempotent left exact triple on E.

Proof. ¢ is left exact since the right action is.

d—ett

d—-(((eh@u))@xu
ld— ((eh@u)!
'd— (e)@uu

Nd—e!

1d—e!

d—et
For 1 above we note that

(e @ su)! =(e)@ +u,
since

EeN@ug=(E)g=1. O
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Let X denote the subtopos of E corresponding to . We abuse notation and write
t: E—X in TOP°?, Now

A qup B

aulp
I*p qlt

X

defines a gamut from B to A.

Proposition 17. The construction above extends to a homomorphism of bicategories
A4 :(COFIB TOP)(B, A)—»*GAM(B, A).

4. The main result

We will show that 2 and 4 introduced in Section 3 constitute a biequivalence,
+*GAM(B, A)~ (COFIB TOP)(B, A).

Proposition 18. *xGAM(B, A)—(COFIB TOP)XB, A)—+*GAM(B, A) is the identity.

Proof. If

is X of
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then:
(i) We may take
4 bh N
/ Y
bga= \ /
&g
Hence g«p=nh and g.t=/.
(i) We may take
Xty=
J
Hence typ=g.
(iii) From (ii) we see that
bh A ( 1h )
d=|a bfg m xg 1fg | =dtts
N / /'//'8 = 1
_ Xg J - Xg J

which together with the diagram in (i) yields g«fp=0. O

To establish that (COFIB TOP)(B, A)—=*GAM(B, A)—(COFIB TOP)(B, A) is
equivalent to the identity we find it convenient to introduce some more notation.
We write (p, E, §) for 2(4(p, E,q)) and k: E—E for the functor defined by

eqqxp

/ \q‘q*tp
eqqsltsp
% /qt't

ett*p

e—ep
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(As before we are writing

q.P
A«————B
Q*’.p
LD\ qal
X

for A(p, E, q).) k is clearly an arrow of spans. It is also an arrow over X, if we write
t:E-X for the other projection.

Now, it is well known from Wraith’s glueing construction that E is isomorphic
to the category of coalgebras for a left exact cotriple on A X X X B, by an isomor-
phism that identifies (5,7, g) with the forgetful functor. Our present task amounts
to showing that if (p, E,q) is a TOP® fibration, then (p,f,q): E~>AXXXB is
cotripleable. k : E—E is the usual comparison functor. The next lemma will allow
us to simplify notation somewhat.

Lemma 19. If (p, E, q) is a TOP® fibration, then ps, t« and q4 are inclusions in
TOP.

Proof. ¢, is so by construction. From Lemma 13 we have g, fully faithful and since
¢1—4g— g« in CAT we have g, fully faithful also. Since p: E—A is a CAT left
fibration (from 1 to A), E/e—A/ep has a fully faithful right adjoint, for all e in
E. By taking e=1 we see that p, is fully faithful. [

This allows us to suppress ps and write p: E—p for p:E—pps, when con-
venient. We do similarly for 74 and g..

Lemma 20. k: E—F has a right adjoint, k.

Proof. Actually, this together with left exactness of k follow;s because our construc-
tions ensure that k is a TOP® arrow. For

- bp
a bip
X ﬁn’ '
& .

xXp J

in E, in which g, and 1 are suppressed, dk« is given by the foliowing inverse limit
diagram in E:
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N
bt bp Xxp

Verification of this is straightforward. [
Lemma 21. For (p, E,q) a TOP® fibration, p«g=1, pst=1 and t,g=1.

Proof. (i) psg=1 follows from

ap,— 1

2> N

after the proof of Lemma 19.
(ii) For p«t=1 observe that in £

e—apyt

e— ((ap+))@ »u

le— (ap4)!

le—ap.

where t follows from (i). Since

and the front square is cartesian there is exactly one such morphism in E.

(iii) For r,g=1 it suffices to show (e!)@.ug=1, for all e in E. This follows
immediately from Lemma 15. (O

Lemma 22. k is fully faithful.
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Proof. We show If:k*k:’E. This requires that we have isomorphisms, dk.p=a,
dk.t=>x and dk.q= b satisfying

dkeyp —— a dkyp —— a dky —— x
dk.Gp 8  dk.p ¢ and dk.gt v
dk«gp — bp dkytp ——xp dk«qt —— bt

for all d, as above, in E. Such isomorphisms are found when p, ¢ and q are applied
to the finite limit diagram which defines k. and the results of Lemma 21 are taken
into account. [

Lemma 23. For all e in E, the following diagram is a puilback in E:

e@

eq
eqt
et ———— eqt
egt

Proof. Since
eg

e——eq

i
[

e———req
eG

is a pullback in E and

eq——eq

NN

eq—eq

eq—— |—eq
NN
| —1

is a pullback in B* and the right action is left exact,

e=eleq) —— eqleq)=eq

e! —-—-"'(;;.)—!—"“* (eq)!
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is a pullback: in E. Applying @ «u and noting the definition of # we have a pullback,
e@

eq@ sl

et " eqt

But g@«u—q as the following calculation shows:

d—eq@xu in E

ld—eq in £

(d)g—eq in B

dq—eq in B
d—eq in E O

Theorem 24. (COFIB TOP)(B, A) ~*GAM(B, A).

Proof. After Proposition 18 and Lemma 22, it only remains to show £: E Skkx,
i.e. the diagram

eqt eqp etp

is a limit diagram in E, for all e in E.
Since /E is fully faithful and /E - @ — @+, @« is fully faithful. From this we see
that e@+ is of the form (ex : ep—e@ «up, e@4u) and that e=(ex)e@ 4u, for all e in

E. In our simplified notation the last isomorphism can be expressed by the following
pullback diagram in E:

e . e@ xld
ep e@up
ep e@xup

eK
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This pullback together with that of Lemma 23 enable one to show that e is the re-
quired limit. [J

Corollary 25 (Theorem 7). (CODCOFIB TOP)(B, A) ~LEX*(B, A).

Proof. Proposition 9. (Note that (COFIB .¥ )(B, A)=(FIB ¥ °?)}(B, A)°*® and
X (B, A)=X(B, A)**.) O

5. Further aspects of TOP cofibrations

Theorem 24 enables one to quickly discover many properties of TOP®P fibra-
tions. Since all essentially arise from gamuts, ‘diagram lemmas’ are particularly easy
to check. A single example (cf. T < mma 23) should illustrate the point.

Lemma 26. For all e in E, (p, E, q) a TOP® fibration, the following diagram is a
pullback in E:

el —— et

T

B
ep eip etp

Proof. Let

/\.
\/
1h /

1/8 vt X &

\

V74

/\
\/

Xg

|

1h

1 fg memmms X @

/

\/ \/

/\
\/

\. ,
lg -
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A TOP®? fibration, (p, E, g), gives rise to two more (CAT) actions on E.

Lemma 27. For any s: E—T in CAT; if s s« with s, fully faithful and if E has
and s preserves pullbacks, then s is a CAT left fibration (from 1 to T). O

So, for (p.E.q) a TOP® fibration, t: E—X and ¢q:E—B are also CAT left
fibrations. We can say somewhat more.

Proposition 28. 1: X< E—B:q is a LEX fibration from B to X.
Proof. LEX—CAT creates the limits needed to define ¢, # and . as before. If

(p, E, g) arises from the gamut (h, X, f, g, a), it is easily verified that

x'-—‘i——»x,a/ wag /bhy
N A SN AT
\ /

describes the left X action. Clearly this is compatible with the original right B action
and the two associate. [

For e in E and #:b—eq in B, we write foe for the left action of B on E.

Proposition 29. q: E — B satisfies the Beck-Cheva’ley condition. That is, if

N
N

is a pullback in B, then (n°e)o= B o (ey).

Proof. - o~ can be calculated using pullbacks in E. We have

Boey)——— ey

Tk

b —;—-—'bz=(ey)q
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a pullback in E (suppressing ¢.). But also,

nce—— ¢

[ Y
b 3 b,
is a pullback in E and
by = *eq
[ y
\ B ‘ \
2 b )’1 > by
b l A > bl l
K )
b—2L 3y,
is a pullback in B?, whence
(moe)o—ey

]

b """“"""'““""’b]

is a pullback and (zce)p>fo(ey). O

89

If (p, E,q) arises from a gamut, (4, X, f,g,0), it is easy to see that ¢, can be

described by
bh
N
bfg
SN A
0Og

Proposition 30. (i) q, preserves and reflects pullbacks.
(ii) For all e in E and all b in B, (eq xb)q,=ex bq,.

bg,=0

O
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Corollary 31. q: E—B is a logical morphism.
Proof. See Theorem E of [1]. [J

Corollary 32. q«: B—E is an open inclusion in TOP (f and only if it is a TOP right
cofibration (from B to 1).

Proof. ‘If’ follows from Corollary 31 and Lemma 1.4 of [4]. Conversely, if gy is
an open inclusion, we may take p,: A—E to be the complementary closed inclusion
and the glueing construction for a left exact functor tells us that (p., E,q«) is a
TOP codiscrete cofibration from B to A. In particular g4 is a TOP right
cofibration. [

Of course the ‘if” part above also follows immediately from the observation that
gx:B—E is equivalent to E/v—E, where v>—1 in E (for E arising from a gamut)
has

1h )

/7 1

1fg

NA

. 0Og J

Similarly, for p.: A—E arising from a gamut, we see that p, is the closed inclusion
corresponding to ¥>—1 in E, where

r 1h )

N\ A

Proposition 33. p,: A—-E is a closed inclusion in TOP if and only if it is a TOP
left cofibration (from 1 to A). O

For a TOP cofibration (p«, E, g4), with « and v as above, we see that u«v. This

expresses the fact that p, and g, are ‘disjoint’. Cofibrations can be constructed
from such data:

Proposition 34. If 1 <uuv in a topos E and p,: A—E is the closed inclusion cor-
responding to u and q.:B—E is the open inclusion corresponding to v, then
(P E, q4) is a TOP cofibration from B to A.
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Proof. After Corollary 32 and Proposition 33 we have only to check the com-
patibility of the actions and their association. We have 4 equivalent to the full sub-
category of E determined by those e for which e x u=u, B(~E/v) equivalent to the
full subcategory of E determined by those e for which e=e".

exXuy—— U

n—wa’e
4 P 714

is a pushout and eg : e—eq is the diagonal, e—e®. Now pq is 1, since u is initial in
A and v—u. For e in E and a:a—ep in A, e is given by the following pullback
in E:

age—> ¢

a ———ep

After applying g =( )" to this we still have a pullback, but with bottom row 1—1.
Hence (@e)g=eq and (p, E, q4) is a left cofibration from B to A.

For :eq—b in B, let §: e— b denote its transpose in E. Since g has a left adjoint,
viz. — X v, and e’ Xv>e X v, we can calculate ef as the following pushout in E:

Bxuv
exv—bXxv

e—— ef

Since p preserves pushouts, ep=(ef)p if p inverts the top row. But for any e we
have (e X v)p=u, since v>-u implies ¥ X v=>v. Hence (P4, E, q») is a right cofibra-
tion from B to A.
Finally, to see that (ae)f =a(ef), observe that
eq—eq
I\
b—b

N
|

| ——1

1 1

| —1
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is a pullback in B?%; conclude that

(ae)—ef

a——————ep
is a pullback in E and note that this pullback defines a(ef). O

Remark 35. The proof of Proposition 34 also slhiows that in TOP°P associativity
follows from the other requirements for a fibration. That is: (p«, E, @) is a TOP
cofibration from B to A if and only if it is both a2 TOP left cofibration from B to
A and a TOP right cofibration from B to A. [J

In view of Proposition 29 for our generic ¢: .5 —B, we might consider the left
action of B on E to be the leading aspect and fcllowing Paré and Schumacher [5]
write f*(e) for foe and Zg(e) for ef. Then the B-indexed category corresponding
to g has particularly well-behaved B-indexed sumn.s. (There is some justification for
this since cod : B* — B provides the paradigmatic example of ¢ and gives rise to the
usual indexing of a base category B. We haster. to add, however, that geometric
morphisms are usually taken to define quite a different indexing.) From this point
of view it is natural to enquire whether the @ « enjoyed by p: E —+A4 endows the cor-
responding A-indexed category with any A-indeied products. In a meagre way the
answer is yes.

To understand @ & this way it suffices to understand @ «u. For e in E, write & for
e@«u. Then ():E—E is right adjoint to !( ): E—E and it is easy to verify that
é='e (and !e=18). So it suffices to study & for e such that ep=0. In this case
é=[I(e), where ! is 0—ép, follows immediately from the adjunction.

6. Examples

In principle, Theorem 24 and Proposition 34 make the construction of TOP
cofibrations a simple matter but we wish to emphasize two naturally occurring
classes of examples.

The homomorphism (") : CAT®°®—CAT, defined by E=setf”, has a left ad-
joint (viz. (') where F=(set")°P). Its restriction to cat®°®, where cat = cat(set),
factors through TOP°®—CAT so cat®—»TOP preserves the colimits needed to
define cofibrations. CAT cofibrations were characterized by Street in terms of
gamuts relative to CAT—PROF. The reader is referred to [6].

Proposition 36. If p: ASE<B:q is a cat cofibration from A to B, then
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ps:A—E<B:q. is a TOP cofibration from B to A. (Here p— ps. and
Gd-q«) O

After Proposition 32, 33 and 34 the following topological result is immediate.

Proposition 37. If F—X U in top, the category of small topological spaces, with
F closed, U open and FNU=0; then F—X —U is a TOP cofibration from U to
F. O

7. Prononsense

If #:B—A is a profunctor between categories, it is well known that the
associated codiscrete cofibration is A—>®«<B, where |®|=|A|+|B|, P(a’,a)=
A(a',a), ®(b',b)=B(b",b), P(a,b)=D(a,b), ®(b,a)=0. This construction has a
universal property relative to CAT—PROF. indeed, arrows of CAT cospans,

(A-P<B)>(f:A>M—B:g),

are in bijective correspondence with transformations, @ —»g,& f*, in PROF. After
Corollary 25 it should be clear that the glueing construction applied to a single left
exact functor enjoys the same universal property relative to TOP—LEX*°,

Similar to the above construction for profunctors is that which associates to a
protriple, #: A— A, a functor, A—>Ag. Here |A4|=]|A|, Ag(a’,a) = d(a’,c), com-
position is accomplished via @@ @ — P, and 4 @ is used to define A—>A4. This
construction too has an obvious universal property and it makes sense to enquire
after it for any proarrow equipment, ( ). Following the situation in CAT, it is
reasonable to say that f: A—B in ¥ is bijective on object- relative to ( )« if B is
equivalent to A4 for some triple @ in .#. Necessarily @ can be taken to be f,® f*.
Since a triple in LEX is a left exact cotriple, it is easy to see that the ‘glueing’ con-
struction, which associates to a left exact cotriple the geometric morphism deter-
mined by the cofree functor, realizes the above universal property relative to
TOP—LEX. In [9], f: A—B in ¥ is defined to be fully faithful relatie to
()u:X¥— 4 if f: A- f,®f*is an isomorphism.

Theorem 38. The image factorization system of TOP is the bijective on objects —
Sully faithful factorization system relative to TOP—LEX. [
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